
Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of
Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-
AC04-94AL85000. SAND NO. SAND2016-4883 C

Op#miza#on	 of	 Block	 Sparse	 Matrix-‐
Vector	 Mul#plica#on	 on	 Shared	
Memory	 Architectures

Ryan	 Eberhardt,	 Mark	 Hoemmen	
Sandia	 Na#onal	 Laboratories

Mo#va#on

• Sparse matrices arising from higher-order discretizations
and problems with multiple degrees of freedom often
exhibit a dense block substructure in which dense blocks
are constant size and aligned

• BCSR is a common storage format used to store these
matrices

• Other formats may be more efficient, but there are
development and runtime costs associated with translating
between formats

• We seek to optimize BCSR mat-vec on various shared-
memory architectures

Storage	 format:	 Block	 CSR

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 ...]val = [

row_ptr = [0, 2, 3, 6]

col_idx = [0, 2, 3, 1, 2, 3]

Single-‐level	 parallel	 algorithm

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T0

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

T2

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0

y1

y2

y3

y4

y5

y6

y7

y8

Single-‐level	 parallel	 algorithm
#pragma omp parallel for
for(int target_block_row = 0; target_block_row < jb; target_block_row++) {
 int first_block = row_ptr(target_block_row);
 int last_block = row_ptr(target_block_row+1);

 double local_out[bs] = {0};

 for(int block = first_block; block < last_block; block++) {
 int target_block_col = col_ind(block);
 for(int col=0; col<bs; col++) {
 double vec_this_col = x[target_block_col][col];
 for(int row=0; row<bs; row++) {
 local_out[row] += val[block][col][row] * vec_this_col;
 }
 }
 }

 // Write output for this block row back to global output
 for(int row=0; row<bs; row++) {
 y[target_block_row][row] = local_out[row];
 }
}

GPUs

• CUDA has a large number of threads operating in SIMT
(single instruction, multiple thread)

• A group of 32 threads (known as a warp) execute the
same instruction in parallel

• Threads in a warp must cooperate

• Threads should also access contiguous segments of
memory for “coalesced” accesses

• More levels of parallelism are needed — need to use finer-
grain parallelization

GPUs:	 By-‐block	 algorithm

T0

T1

T2

T3

T4

T5

T6

T7

T0

T1

T2

T3

T4

T5

T6

T7

T8

T9

T10

T11

T12

T13

T14

T15

T8

T9

T10

T11

T8

T9

T10

T11

T12

T13

T14

T15

T16

T17

T18

T19

T20

T21

T22

T23

T16

T17

T18

T19

y0

y1

y2

y3

y4

y5

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13

GPUs:	 By-‐block	 algorithm

• Accesses to val will be fully coalesced. Accesses to x will be fully
coalesced for bs=2 and partially coalesced for larger block sizes

• Accesses to row_ptr and col_idx and writes to global_out are
generally not coalesced, but this has a smaller impact, especially for large
block sizes

• There is no interaction between threads until the final reduction. We exploit
coherency of memory access within a warp to avoid synchronization

• If the block size is not a power of two, some threads in each warp will be
idle. However, the high degree of parallelism keeps the memory bus
saturated despite decrease in active number of threads

• Block size is limited to bs=5

GPUs:	 By-‐column	 algorithm

T0

T1

T2

T3

T4

T5

T0

T1

T2

T3

T4

T5

T0

T1

T2

T3

T4

T5

T8

T9

T10

T11

T12

T13

T8

T9

T10

T16

T17

T18

T19

T20

T21

T16

T17

T18

T19

T20

T21

T16

T17

T18

T19

T20

T21

T16

T17

T18

T19

T20

T21

T16

T17

T18

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14

y0

y1

y2

y3

y4

y5

y6

y7

y8

GPUs:	 By-‐column	 algorithm

• Like the previous algorithm, this algorithm has minimal
interaction between threads and achieves coalesced or
partially coalesced access to val and x

• However, each thread must calculate its target block index
and target column (within a block) on every iteration. Memory
accesses stall on these integer operations

• Despite the improved occupancy, the previous algorithm
tends to outperform it for block sizes up to 5x5

• This algorithm can handle block sizes up to 32x32

GPUs:	 Row-‐per-‐thread	 algorithm

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

. . .

T8 T8 T8 T8 T8 T8 T8 T8

T9 T9 T9 T9 T9 T9 T9 T9

T10 T10 T10 T10 T10 T10 T10 T10

T11 T11 T11 T11 T11 T11 T11 T11

. . .

y0

y1

y2

y3
. . .

y8

y9

y10

y11
. . .

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GPUs:	 Row-‐per-‐thread	 algorithm

• In this implementation, accesses to x are not
coalesced. We can address this by loading x into
shared memory

GPUs:	 Row-‐per-‐thread	 algorithm

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

. . .

T8 T8 T8 T8 T8 T8 T8 T8

T9 T9 T9 T9 T9 T9 T9 T9

T10 T10 T10 T10 T10 T10 T10 T10

T11 T11 T11 T11 T11 T11 T11 T11

. . .

y0

y1

y2

y3
. . .

y8

y9

y10

y11
. . .

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GPUs:	 Row-‐per-‐thread	 algorithm

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

. . .

T8 T8 T8 T8 T8 T8 T8 T8

T9 T9 T9 T9 T9 T9 T9 T9

T10 T10 T10 T10 T10 T10 T10 T10

T11 T11 T11 T11 T11 T11 T11 T11

. . .

y0

y1

y2

y3
. . .

y8

y9

y10

y11
. . .

T0 T0 T0 T0 T0 T0 T0 T0

T1 T1 T1 T1 T1 T1 T1 T1

T2 T2 T2 T2 T2 T2 T2 T2

T3 T3 T3 T3 T3 T3 T3 T3

. . .

x0 x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 x13 x14 x15

GPUs:	 Row-‐per-‐thread	 algorithm

• Achieves fully-coalesced accesses to val and x when
the block size is a multiple of 16, and partially-coalesced
accesses when this is not the case

• Threads use few registers, depend on little arithmetic for
memory requests, and do not interact with other threads;
therefore, occupancy is high and latency is low

• Performs best for block sizes ≥16

• Performance does not degrade as much as we might
expect for bs=17

Experimental	 Results

• Compared algorithms to comparable algorithms in Intel MKL,
NVIDIA cuSPARSE, and KSPARSE (Abdelfattah et al.)

• Ran each algorithm 3000 times to determine average
execution time

• Divided execution time by the amount of unique data read (i.e.
the total size of x, val, col_idx, and row_ptr) to determine
achieved throughput. This throughput does not include time
taken for population of matrix or zero-filling of output vector

• All computations were performed using double-precision
values

Experimental	 Results

Plot Name bs Dimensions
(in blocks)

nnzb
(nnzb/row) Description

GT01R 5 1.60K 20.37K (13) 2D inviscid fluid

raefsky4 3 6.59K 111.4K (17) Container buckling problem

bmw7st_1 6 23.6K 229.1K (10) Car body analysis

pwtk 6 36.9K 289.3K (8) Pressurized wind tunnel

RM07R 7 545K 1.504M (28) 3D viscous turbulence

audikw_1 3 314K 4.471M (14) AUDI crankshaft model

Matrices from University of Florida Sparse Matrix Collection

Experimental	 Results:	 SNB/KNC

Compton testbed at
Sandia National Labs

• Used two 8-core Sandy Bridge Xeon E5-2670
processors at 2.6GHz and a KNC Xeon Phi
3120A card

• Intel ICC 15.02 and MKL 11.2.2.164

• Compared against MKL’s mkl_dcsrmv and
mkl_dbsrmv (mkl_dbsrmv is not multi-
threaded)

• Also tested a version of our algorithm that
pads columns within blocks to multiples of 8 —
each column then falls on a 64-byte boundary

Xeon E5-2670 Xeon Phi 3120A

Clock speed 2.60 GHz 1.10 GHz

Cores 8 57

Threads 16 228

L2 cache 256KB/core 28.5 MB

L3 cache 20 MB

Max mem bandwidth 51.2 GB/s 240 GB/s

We wish to acknowledge our appreciation for the use of the Advanced Architecture Test Bed(s), xxxx, at Sandia National Laboratories. The test beds
are provided by NNSA’s Advanced Simulation and Computing (ASC) program for R&D of advanced architectures for exascale computing.

Experimental	 Results:	 SNB/KNC
Performance comparison

on Sandy Bridge

th
ro

ug
hp

ut
 (G

B/
s)

0

55

110

165

220
G

T0
1R

 (b
s=

5)

ra
ef

sk
y4

 (b
s=

3)

bm
w7

st
_1

 (b
s=

6)

pw
tk

 (b
s=

6)

RM
07

R
(b

s=
7)

au
di

kw
_1

 (b
s=

3)

Performance comparison
on Knights Corner

0

22.5

45

67.5

90

G
T0

1R
 (b

s=
5)

ra
ef

sk
y4

 (b
s=

3)

bm
w7

st
_1

 (b
s=

6)

pw
tk

 (b
s=

6)

RM
07

R
(b

s=
7)

au
di

kw
_1

 (b
s=

3)

MKL BSRMV
MKL CSRMV
Our BSRMV
Our BSRMV (padded/aligned)

Experimental	 Results:	 SNB/KNC
Variable block sizes on Sandy

Bridge

th
ro

ug
hp

ut
 (G

B/
s)

0

64

128

192

256

320

block size

0 4 8 12 16 20 24 28 32

Variable block sizes on Knights
Corner

0

30

60

90

120

150

block size

0 4 8 12 16 20 24 28 32

MKL BSRMV
MKL CSRMV
Our BSRMV
Our BSRMV (padded/aligned)

Experimental	 Results:	 SNB/KNC
Scaling on Sandy Bridge

th
ro

ug
hp

ut
 (G

B/
s)

0

50

100

150

200

250

cores

0 4 8 12 16

MKL BSRMV
Our BSRMV (HT disabled)
Our BSRMV (HT enabled)

Scaling on Knights Corner

0

12

24

36

48

60

cores

0 8 16 24 32 40 48 56

MKL BSRMV
Our BSRMV (1 HW thread)
Our BSRMV (2 HW threads)
Our BSRMV (4 HW threads)

Experimental	 Results:	 Kepler

• Used an NVIDIA K80S dual-GPU card
with only one GPU used to run the
tests

• ECC was on and Boost Clock was off
• GCC 4.9.0 and CUDA 7.0.18
• Compared against cuSPARSE’s

cusparseDbsrmv and KSPARSE’s
ksparse_dbsrmv

Core clock speed 562 MHz

Memory clock speed 2505 MHz

Max memory bandwidth (with
ECC off) 240 GB/s

STREAM benchmarked
bandwidth 145 GB/s

Shannon testbed at
Sandia National Labs

We wish to acknowledge our appreciation for the use of the Advanced Architecture Test Bed(s), xxxx, at Sandia National Laboratories. The test beds
are provided by NNSA’s Advanced Simulation and Computing (ASC) program for R&D of advanced architectures for exascale computing.

Experimental	 Results:	 Kepler
Performance comparison on Kepler

th
ro

ug
hp

ut
 (G

B/
s)

0

40

80

120

160

G
T0

1R
 (b

s=
5)

ra
ef

sk
y4

 (b
s=

3)

bm
w7

st
_1

 (b
s=

6)

pw
tk

 (b
s=

6)

RM
07

R
(b

s=
7)

au
di

kw
_1

 (b
s=

3)

KSPARSE BSRMV
cuSPARSE BSRMV
By-block algorithm
By-column algorithm

Experimental	 Results:	 Kepler

Variable block sizes on Kepler

th
ro

ug
hp

ut
 (G

B/
s)

0

32

64

96

128

block size

0 4 8 12 16 20 24 28 32

KSPARSE BSRMV
cuSPARSE BSRMV
By-block algorithm
By-column algorithm
Row-per-thread algorithm

Conclusions	 and	 Future	 Work

• By optimizing memory access patterns and minimizing visible
latencies, we can achieve high bandwidth utilization and
outperform vendor-optimized implementations

• Performance of KNC may be optimized by developing a
cooperative threading strategy to improve temporal cache locality
of x for hardware threads

• Data structure transformations may be required to improve
performance by a significant margin. Blocks might be grouped to
and processed as tiles to reduce the sizes of row_ptr and
col_idx and to improve cache performance for x

• May be possible to avoid altering the BCSR format by using
metadata pointing to tiles in the matrix

GPUs:	 By-‐block	 algorithm

const int i = thread_block_idx * thread_block_size + thread_idx;
const int warp_id = i/WARP_SIZE;
const int lane = i%WARP_SIZE;
const int target_block_row = warp_id;
const int first_block = row_ptr[target_block_row];
const int last_block = row_ptr[target_block_row+1];
const int col = (lane / bs) % bs;
const int row = lane % bs;

// Allocate shared memory for reduction step
double *shared_out = <allocate thread_block_size*sizeof(double) bytes smem>;
shared_out[thread_idx] = 0;

GPUs:	 By-‐block	 algorithm

// Only process whole blocks (disable threads that can only cover partial blocks):
if(lane < (WARP_SIZE/(bs*bs))*(bs*bs)) {
 double local_out = 0;
 for(int block = first_block + lane/(bs*bs); block < last_block;
 block += WARP_SIZE/(bs*bs)) {
 local_out += val[block][col][row] * x[col_ind(block)][col];
 }

 // Reduce across the warp to produce the final row results
 shared_out[thread_idx] = local_out;
 int stride = round_up_to_power_of_two((32 / bs) / 2);
 for(; stride>=1; stride /= 2) {
 if(lane < stride*bs && lane + stride*bs < WARP_SIZE)
 shared_out[thread_idx] += shared_out[thread_idx + stride*bs];
 }

 // Write the final reduced block for this row to global mem
 if(lane < bs) {
 y[target_block_row][lane] = shared_out[thread_idx];
 }

}

GPUs:	 By-‐column	 algorithm

const int i = thread_block_idx * thread_block_size + thread_idx;
const int warp_id = i/WARP_SIZE;
const int lane = i%WARP_SIZE;
const int target_block_row = warp_id;
const int first_block = row_ptr[target_block_row];
const int last_block = row_ptr[target_block_row+1];
const int row = lane % bs;

// Allocate shared memory for reduction step
double *shared_out = <allocate thread_block_size*sizeof(double) bytes smem>;
shared_out[thread_idx] = 0;

GPUs:	 By-‐column	 algorithm
// Only process whole columns (disable threads that can only cover partial columns):
if(lane < (WARP_SIZE/bs)*bs) {
 double local_out = 0;
 for(int target_nnz_col = first_block*bs + lane/bs; target_nnz_col < last_block*bs;
 target_nnz_col += WARP_SIZE/bs) {
 int block = target_nnz_col / bs;
 int col = target_nnz_col - block*bs;
 local_out += val[target_nnz_col*bs + row] * x[A.col_ind(block)][col];
 }

 // Reduce across the warp to produce the final row results
 shared_out[thread_idx] = local_out;
 int stride = round_up_to_power_of_two((32 / bs) / 2);
 for(; stride>=1; stride /= 2) {
 if(lane < stride*bs && lane + stride*bs < WARP_SIZE)
 shared_out[thread_idx] += shared_out[thread_idx + stride*bs];
 }

 // Write the final reduced block for this row to global mem
 if(lane < bs) {
 y[target_block_row][lane] = shared_out[thread_idx];
 }

}

GPUs:	 Row-‐per-‐thread	 algorithm

const int i = thread_block_idx * thread_block_size + thread_idx;
const int warp_id = i/WARP_SIZE;
const int lane = i%WARP_SIZE;
const int target_block_row = warp_id;
const int first_block = A.row_ptr(target_block_row);
const int last_block = A.row_ptr(target_block_row+1);

// Allocate shared memory for storing segments of x
double *shared_vec = <allocate thread_block_size*sizeof(double) bytes smem>;

if(lane < bs) {
 double local_out = 0;
 for(int block = first_block; block < last_block; block++) {
 shared_vec[thread_idx] = x(A.col_ind(block), lane);
 for(int col = 0; col<bs; col++) {
 local_out += shared_vec[col] * A.val[block][col][lane];
 }
 }

 y[target_block_row][lane] = local_out;
}

